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SUMMARY 

For the simulation of the durability and life estimation of cyclic loaded 
parts, simulation models which consider material plasticity and damage effects 
such as the local strain concepts are state of the art.  Typically light weight 
structures are dimensioned in a way that limited local yielding is allowed. 
Traditional nonlinear FEA analysis simulating the local material plasticity are 
still very resource intensive, yet fatigue and life endurance simulations 
commonly need stress and strain results for various different load levels, 
making such an analysis expensive.  In order to reduce the number of nonlinear 
simulation results, approximation techniques based on the Neuber formula 
which estimate the plastic stress-strain state from linear analysis runs are 
utilized in commercial fatigue simulation software such as "NEi 
Fatigue/Winlife", FE-Fatigue or "MSC Fatigue", to name a few. 

To validate the Neuber approach, this paper compares notched test specimen 
equipped with strain gages to the results of a finite element analysis with an 
elastic-plastic material model and different Neuber-based approximations. 
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1:  Introduction 

In the past decades, technical progress and the increasing utilization of 
Finite Element simulations lead to lighter components with their shape adapted 
to efficiently bear the applied loads. A further trend in structural parts 
optimisation is to build them not for an infinite life endurance, but rather for 
the expected service life, including a safety margin. The general goal is further 
weight and material reduction in order to increase competitiveness, while on 
the other hand gaining knowledge about and improving of reliability and safety 
over the product life cycle. 

While some parts have to sustain a constant cyclic loading during their 
entire life, many parts are loaded with a random load range over time.  Load 
spikes commonly lead to conditions were local yielding is observed.  The 
simulation of a component’s fatigue behaviour therefore must include 
nonlinear material effects.  While the solution of finite element simulations 
with nonlinear materials has been state of the art for several years, it still is by 
magnitudes more expensive then a linear static solution.  For a fatigue analysis 
typically the FEA results for various load levels are theoretically required, 
multiplying the analysis expenses into regions where they would become often 
prohibitive expensive.  However, in the early 1960s Heinz Neuber introduced a 
method to calculate strains and stresses exceeding the material yield point 
based on the nominal stress and notch concentration factors [1]. 

With the application of Finite Element Analysis, notch concentration factors 
are being inherently considered. The general Neuber procedure of extrapolating 
linear stresses into the plastic material region can thus be applied to arbitrary 
geometries. 
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2:  The Neuber Formula 

Parts made of ductile material can be designed economically very efficient 
if they are not secured against yielding but allowing a limited amount of plastic 
deformation.  The components dimensioning requires the knowledge of its 
yield curve.  In the following we will look at a punched flat specimen under 
tensile loading as an example for an actual part: 

 

Figure 1: Stress-strain diagram of a tensile test specimen and nominal stress curve 
for the punched cross section. 

Under uniaxial loading, yielding occurs when the stress in the notch reaches 
the yield strength σF, or respectively when the strain in the notch εF = σF/E.  
The yield point for the component (A) is determined by: 

FtnFmax σKσσ =⋅=  (1) 

The nominal stress at the yield point hence is: 

t

F
nF K
σ =
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The yield load is calculated by: 
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In over-elastic loading, the proportionality between stress and strain 
respective load and strain is lost.  Moreover, the notch concentration factor Kt 
becomes invalid.  Because of the σ-ε relationship of the material, we can 
presume that the strains are over-proportional in the plastic range and the 
stresses increase under proportional compared to the linear section. 

Because of the different stress-strain gradient in the plastic material range, 
the notch stress cannot be determined anymore by a concentration factor Kt. 
Instead we need different concentration factors for stresses and strains.  The 
strain concentration factor Kε is defined as the relation between the maximum 
strain εmax in the notch and the nominal strain εn: 

n
ε ε
K max=

ε  (4) 

Analogical, the stress concentration factor Kσ can be expressed as the 
relation between the maximum stress σmax in the notch and the nominal stress 
σn: 

n
σ σ
K max=

σ  (5) 

With uniaxial loading and elastic strains provided, the following 
relationship between nominal stress and nominal strain exists: 

E
ε n
n =

σ

KKK ≤≤

2

 (6) 

Between the three notch concentration factors, the following inequality 
applies: 

εtσ  (7) 

Neuber showed on a shear loaded prism with a lateral groove that the stress- 
and strain concentration factors can be coupled through the relation: 

tεσ KKK =⋅  (8) 

It was further shown that the equation (8) can be used to calculate 
component yield curves under different loading types.  In Figure 2 the 
progression of the concentration factors according to equation (8) is plotted 
over the quotient εmax/εF for a punched plate: 
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Figure 2: Stress and strain concentration factors for a punched plate according to 
equation (8) 

From equations (4), (5) and (6) we can write: 

E
σKσε n

t
2

maxmax ⋅=⋅
2

 (9) 

On the left side of the equation we have the notch loading as product of its 
local stress and strain, the right side is defined by the notch geometry (Kt), the 
load (nominal stress σn) and the material (E).  Further, we have the 
combination of σ and ε from the material stress-strain curve. In order to 
determine the actual stress and strain in the notch, we now only need to draw 
equation (9) into the stress-strain curve obtained from an unnotched tensile test.  
The intersection of the "Neuber hyperbola" from equation (9) with the stress-
strain curve gives the actual local stress-strain state of the notch.  It can be 
shown that equation (9) is also valid for the linear section, so no special 
consideration needs to be undertaken when applying this procedure. 

Figure 3 shows the graphical determination of the notched stress-strain state 
utilizing the Neuber hyperbola within the material tensile curve. 

 

Figure 3: Determination of notch stress (point K) utilizing the Neuber hyperbola 
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In the design of a part, often the load for a given notch strain is of interest. 
In this case, and to compare these theoretical to the actual results later in this 
paper, we can write equation (9) in the form: 

t
n K

εσεE
σ

)( maxmax ⋅⋅
=  (10) 

The stress in the notch σ(εmax) is retrieved from the σ-ε diagram.  Equation 
(10) can be referred to as the yield curve of the part. 

Dixon and Strannigan empirically found a modified approach to calculate 
the parts yield curve, which contains a correction expression in addition to the 
basic Neuber equation [2]: 
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The secant modulus S is determined in for any given point on the stress 

strain curve through 
ε

S ≡ σ  (13) 

A third variation of the Neuber equation is proposed by Sonsino [3], which 
determines the local strain by averaging the theoretical, linear extrapolated 
strain with the Neuber strain: 

2max
Neuberlinε =
εε +      (14),  with 

E
ε nt
lin =

σK ⋅      (15) 

 

3:  Experimental determination of stress and strain in a punched 
specimen 

First, the material stress-strain curves were obtained on unnotched test 
specimen, Figure 4: 
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Figure 4: Stress-Strain Plot of the investigated test specimen 

Then notched test specimens of the same materials (AlMgSi 1 and St-52) 
were prepared:  The cross section was 8x40mm, and a central, 10mm diameter 
hole served as notch. Inside the hole two strain gages were applied as shown in 
Figure 5: 

 

Figure 5: Punched test specimen equipped with strain gages 
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For the steel specimen, the two strain gages measured values differing ~10% 
from the mean value.  Several reasons contributed to the difference:  

1. One strain gage was not exactly positioned on the equator of the 
hole but offset by about 10°, measuring strains not on the hot spot 
but slightly lower values. 

2. The other strain gage was not exactly positioned in the middle of 
the hole depth, but offset by ~0.5mm.  While the test specimens 
were flat themselves, slight bending moments over the horizontal 
axis (Fig. 5) could have been introduced due to tolerances in the 
machine clamping, which would - due to the offset of the one 
strain gage - result in different readings. 

3. Finally, the clamping itself may introduce slightly different load 
paths between the left and right side of the hole, resulting in the 
observed differences. 

Because the source of the difference could not be pinpointed to only one of 
the mentioned reasons, the average value is subsequently considered. 

The specimens were loaded and unloaded in several loops with increasing 
maximum loads, load and strain from the strain gages were recorded, Figures 6 
and 7: 
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Figure 6: Aluminum specimen yield 

curve 
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Figure 7: Steel specimen yield curve 
 



NUMERICAL VALIDATION AND APPLICATION 
OF THE NEUBER-FORMULA IN FEA-ANALYSIS 

4:  Finite Element Analysis of the specimen 

In order to being able to compare the experimental results to the Neuber 
formulae, we need to determine Kt. For the plate with a central hole, Roark [4] 
gives the empiric formula: 

32 253.1266.3213.33 ⎟
⎠
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⎝
⎛⋅−=

B
R

B
R

B
RKtz  (16) 

With the Radius R=5mm and the specimen width of 40mm, equation (16) 
results to Ktz = 2.42.  The solution according to Roark was validated with a 
linear static solution for the specimen utilizing Noran Engineering NEiNastran 
version 8.3, Figure 8: 

 

Figure 8: FE analysis to determine stress concentration factor 

With a nominal tension in the remaining cross section of 200 MPa, the FE 
analysis returned 489.2 MPa maximum stress. Ktz is thus calculated to be 2.45, 
which validates Roarks empirical solution.  In the next step, nonlinear FE 
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analyses were conducted. The material stress-strain curves as determined 
through the tensile tests and shown in Figure 4 were input in tabular format and 
a quarter of the punched tensile specimen was meshed. The model consisted of 
3350 QUADR elements, which produced 21200 degrees of freedom. The 
loading occurred in 10 steps, unloading in 4.  

The resulting stresses during loading and after unloading are summarized in 
Figures 9 and 10. In order to compare the results, the nominal stresses were 
compared for three given strains for each specimen. Aditionally, the residual 
strain after the largest load cycle was simulated through FEA and compared: 

Strain [‰]
Nominal Stress 

[MPa],
Strain [‰]

Nominal Stress 
Neuber [MPa]

Deviation 
Neuber [%]

Nominal Stress 
Mod. Neuber, 

[MPa]

Deviation 
Modified 

Neuber [%]

Nominal Stress 
FEA [MPa], 
Strain [‰]

Deviation 
FEA [%]

2 165.3 171.71 3.9 171.71 3.9 176.25 6.6
3 247.3 237.74 -3.9 243.01 -1.7 255.84 3.5
5 371.5 312.64 -15.8 335.01 -9.8 343.31 -7.6

Residual Strain 0.716 - - - - - 193  

Figure 9: Result comparison for punched steel specimen 
 

Strain [‰]
Nominal Stress 

[MPa],
Strain [‰]

Nominal Stress 
Neuber [MPa]

Deviation 
Neuber [%]

Nominal Stress 
Mod. Neuber, 

[MPa]

Deviation 
Modified 

Neuber [%]

Nominal Stress 
FEA [MPa], 
Strain [‰]

Deviation 
FEA [%]

3 80.2 81.6 1.8 81.6 1.8 83.9 4.6
7 158.3 139.1 -12.1 147.3 -6.9 174.8 10.4
12 202.3 182.4 -9.9 198.1 -2.1 211.1 4.3

Residual Strain 5 - - - - 22.0 340.0  

Figure 10:  Result comparison for punched aluminum specimen 

The deviation of the approximation methods by Neuber varies between 1.7 
and 15.8%. The deviation of the FE analysis ranges from 3.5 to 10.4% 
compared to the measured data.  The residual stresses are over predicted by the 
FEA analysis by a factor of 1.9 to 3.4. 

Figures 11 and 12 graphically show the results.  In the upper half the 
material stress-strain curve is shown along with the Neuber hyperbolas 
exemplary for two nominal stresses.  In the lower half, the specimens yield 
curve based on the nominal stress is compared for the various methods. 
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Figure 11: Neuber Hyperbolas and yield curves for the steel specimen 
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Figure 12: Neuber Hyperbolas and yield curves for the aluminum specimen 
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5:  Conclusions 

The approximation of the plastic stress-strain state by utilizing the Neuber 
formula shows a sufficient correlation for typical engineering use.  Nonlinear 
FE analysis also showed to be generally sufficiently correlating with the 
measured data.  However it has to be investigated why the residual strains are 
over predicted.  Especially Figure 11 shows that the modified Neuber formula 
becomes invalid past 1.3% local strain.  Hence the maximum applicable strains 
for this approximation are expected to give reasonable results of ~1% 
maximum strain.  While this investigation showed correlation with a uniaxial 
stress-strain state, the correlation in multiaxial states is not verified.   
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